On friendly index sets of 2-regular graphs

نویسندگان

  • Harris Kwong
  • Sin-Min Lee
  • Ho Kuen Ng
چکیده

Let G be a graph with vertex set V and edge set E , and let A be an abelian group. A labeling f : V → A induces an edge labeling f ∗ : E → A defined by f (xy) = f (x) + f (y). For i ∈ A, let v f (i) = card{v ∈ V : f (v) = i} and e f (i) = card{e ∈ E : f (e) = i}. A labeling f is said to be A-friendly if |v f (i)−v f ( j)| ≤ 1 for all (i, j) ∈ A× A, and A-cordial if we also have |e f (i) − e f ( j)| ≤ 1 for all (i, j) ∈ A × A. When A = Z2, the friendly index set of the graph G is defined as {|e f (1)− e f (0)| : the vertex labeling f is Z2-friendly}. In this paper we completely determine the friendly index sets of 2-regular graphs. In particular, we show that a 2-regular graph of order n is cordial if and only if n 6≡ 2 (mod 4). c © 2007 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Labeling Subgraph Embeddings and Cordiality of Graphs

Let $G$ be a graph with vertex set $V(G)$ and edge set $E(G)$, a vertex labeling $f : V(G)rightarrow mathbb{Z}_2$ induces an edge labeling $ f^{+} : E(G)rightarrow mathbb{Z}_2$ defined by $f^{+}(xy) = f(x) + f(y)$, for each edge $ xyin E(G)$.  For each $i in mathbb{Z}_2$, let $ v_{f}(i)=|{u in V(G) : f(u) = i}|$ and $e_{f^+}(i)=|{xyin E(G) : f^{+}(xy) = i}|$. A vertex labeling $f$ of a graph $G...

متن کامل

CERTAIN TYPES OF EDGE m-POLAR FUZZY GRAPHS

In this research paper, we present a novel frame work for handling $m$-polar information by combining the theory of $m-$polar fuzzy  sets with graphs. We introduce certain types of edge regular $m-$polar fuzzy graphs and edge irregular $m-$polar fuzzy graphs. We describe some useful properties of edge regular, strongly edge irregular and strongly edge totally irregular $m-$polar fuzzy graphs. W...

متن کامل

On vertex balance index set of some graphs

Let Z2 = {0, 1} and G = (V ,E) be a graph. A labeling f : V → Z2 induces an edge labeling f* : E →Z2 defined by f*(uv) = f(u).f (v). For i ε Z2 let vf (i) = v(i) = card{v ε V : f(v) = i} and ef (i) = e(i) = {e ε E : f*(e) = i}. A labeling f is said to be Vertex-friendly if | v(0) − v(1) |≤ 1. The vertex balance index set is defined by {| ef (0) − ef (1) | : f is vertex-friendly}. In this paper ...

متن کامل

On Edge-Balance Index Sets of Regular Graphs

In a bi-racial country, it is desired that the numbers of government ministers from the two races should differ by at most one for fairness. Moreover, the numbers of pairs of ministries which interact directly with each other and both headed by ministers of one race should differ by at most one from that of the other race. One can naturally model the above social phenomenon by a graph labeling ...

متن کامل

Full Friendly Index Sets of Slender and Flat Cylinder Graphs

Let G = (V, E) be a connected simple graph. A labeling f : V → Z2 induces an edge labeling f∗ : E → Z2 defined by f∗(xy) = f(x) + f(y) for each xy ∈ E. For i ∈ Z2, let vf (i) = |f−1(i)| and ef (i) = |f∗−1(i)|. A labeling f is called friendly if |vf (1)− vf (0)| ≤ 1. The full friendly index set of G consists all possible differences between the number of edges labeled by 1 and the number of edge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 308  شماره 

صفحات  -

تاریخ انتشار 2008